-
m_entries
java.util.Hashtable<K,V> m_entries
The hashtable used to hold training instances
-
m_classPriorCounts
double[] m_classPriorCounts
The class priors to use when there is no match in the table
-
m_classPriors
double[] m_classPriors
-
m_decisionFeatures
int[] m_decisionFeatures
Holds the final feature set
-
m_disTransform
weka.filters.Filter m_disTransform
Discretization filter
-
m_delTransform
weka.filters.unsupervised.attribute.Remove m_delTransform
Filter used to remove columns discarded by feature selection
-
m_ibk
weka.classifiers.lazy.IBk m_ibk
IB1 used to classify non matching instances rather than majority class
-
m_theInstances
weka.core.Instances m_theInstances
Holds the original training instances
-
m_dtInstances
weka.core.Instances m_dtInstances
Holds the final feature selected set of instances
-
m_numAttributes
int m_numAttributes
The number of attributes in the dataset
-
m_numInstances
int m_numInstances
The number of instances in the dataset
-
m_classIsNominal
boolean m_classIsNominal
Class is nominal
-
m_useIBk
boolean m_useIBk
Use the IBk classifier rather than majority class
-
m_displayRules
boolean m_displayRules
Display Rules
-
m_CVFolds
int m_CVFolds
Number of folds for cross validating feature sets
-
m_rr
java.util.Random m_rr
Random numbers for use in cross validation
-
m_majority
double m_majority
Holds the majority class
-
m_search
weka.attributeSelection.ASSearch m_search
The search method to use
-
m_evaluator
weka.attributeSelection.ASEvaluation m_evaluator
Our own internal evaluator
-
m_evaluation
weka.classifiers.Evaluation m_evaluation
The evaluation object used to evaluate subsets
-
m_evaluationMeasure
int m_evaluationMeasure
-
m_saveMemory
boolean m_saveMemory